[코딜리티] codility lesson 6 sorting - Triangle 100%
문제. A zero-indexed array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and: A[P] + A[Q] > A[R], A[Q] + A[R] > A[P], A[R] + A[P] > A[Q]. For example, consider array A such that: A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20 Triplet (0, 2, 4) is triangular. Write a function: int solution(int A[], int N); that, given a zero-indexed array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise. For example, given array A such that: A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20 the function should return 1, as explained above. Given array A such that: A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1 the function should return 0. Assume that: N is an integer within the range [ 0 .. 100,000 ]; each element of array A is an integer within the range [ −2,147,483,648 .. 2,1...